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Targeted metabolite analysis of aqueous extract of Rumex induratus leaves, in terms of phenolic
compounds and organic acids, and the study of its antioxidant activity against the DPPH" radical, a reactive
oxygen species, hypochlorous acid, and a reactive nitrogen species, nitric oxide ("NO), were performed.
The samples were collected in several locations, spontaneously occurring or from greenhouse culture, at
different stages of development and seasons. The phenolic composition was achieved by high-performance
liquid chromatography (HPLC)—diode array detection, and four hydroxycinnamic acid derivatives and 10
flavonoid glycosides (C- and O-heterosides) were determined. Organic acids composition was established
by HPLC-UV, revealing five compounds. The total amount of phenolic compounds and organic acids
were affected by growing conditions and developmental phase. The aqueous extract exhibited a dose-
related activity against all tested reactive species.
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INTRODUCTION

Metabolic change is a major feature of plant genetic
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bolites of a plant reflects its biochemical status. However, in GSe greenhouse (spring) 11-04-2006 early stage
the case of plants, metabolomics renders difficult by the GSm greenhouse (spr@ng) 23-04-2006 miqstage
complexity of metabolites in any species (/). Phenolic com- Gg? greenﬂouse (spring) 09-05-2006 :)ptlmal stage
pounds and organic acids are known for their influence in the Em gr:rsgng:se (spring) g?gggggg r?m?gssttazgee
organoleptic properties of plant foods (2) and for their utility Fo Fervenca 02-04-2006 optimal stage
in the authenticity and quality control of these matrices (3—J5). FI Fervenca 23-04-2006 late stage
On the other hand, antioxidants present in fruits and vegetables, Pm Pombares 20-01-2006 midstage
such as phenolic compounds and organic acids, have been Po Pombares 02-04-2006 optimal stage
implicated in oxidative damage prevention (6, 7). A dietary food Pl Pombares 24-04-2006 late stage
1mp . 8¢ pre e ary Mm Macedo 04-02-2006 midstage
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creasing the risk of degenerative diseases by reduction of Rm Romeu 04-02-2006 midstage
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Several species of the Rumex (Polygonaceae) genus, namely, SNm Sra das Neves 04-02-2006 midstage
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inflammation, blood purification, and constipation (9—11). SNI Sra das Neves 27-04-2006 late stage
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Table 1. R. induratus Samples Characterization
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Figure 1. Typical HPLC-DAD chromatogram of the aqueous extract of R. induratus leaves. Peaks: 1, caffeoyl-hexoside; 2, p-coumaroyl-hexoside; 3,
feruloyl-hexoside; 4, sinapoyl-hexoside; 5, 6-C-hexosyl-quercetin; 6, 8-C-hexosyl-luteolin; 7, 2”-O-pentosyl-8-C-hexosyl-luteolin; 8, 6-C-hexosyl-luteolin;
9, 2”7-O-pentosyl-8-C-hexosyl-apigenin; 10, 6-C-hexosyl-apigenin; 11, 3-O-hexosyl-quercetin; 12, 3-O-rutinosyl-quercetin; 13, 7-O-hexosyl-diosmetin; and

14, 3-O-rutinosyl-isorhamnetin.

However, their high oxalic acid content has been implicated in
oxalic intoxication, mainly in children (10, 11). Many Rumex
species have been recently studied for their biological activities,
which revealed a wide range of properties, such as effects in
body weight and serum levels of amino acids and minerals (/2),
psychopharmacological (/3), purgative (/4), antioxidant and
cytotoxic (/5, 16), antifertility (/7), antimicrobial and anti-
inflammatory (I8), antidiarrheal (/9), and antiviral activities
(20).

Rumex induratus Boiss. & Reuter is an endemic Iberian herb
that prefers rocky habitats of the thermo Mediterranean region.
It grows spontaneously in Northeast Portugal, where its leaves
are highly consumed. This species is commonly served in salads
and, to mitigate its acidity, is dressed with olive oil and
sometimes mixed with boiled potatoes. Previous studies with
R. induratus have concerned the determination of phenolic
compounds in its leaves (21, 22), its oxalic acid and superoxide
radical scavenging activities (27), its pollen allergenic action
(23), its mercury bioaccumulation capacity (24, 25), and the

characterization of DNA in its sex chromosomes (26). Regard-
less of its wide consumption, its biological potential remains
little characterized.

The aim of the present work was to evaluate the influence of
the growing environmental conditions and developmental stages
in the phenolic compound and organic acid compositions of R.
induratus leaves. For this purpose, targeted metabolite analysis
was performed by high-performance liquid chromatography
(HPLC)—diode array detection (DAD) and HPLC-UV for
phenolic compounds and organic acids, respectively. In addition,
the knowledge of the antioxidant capacity was extended, being
tested against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH"),
a reactive oxygen species (hypochlorous acid), and a reactive
nitrogen species (nitric oxide).

MATERIALS AND METHODS

Standards and Reagents. Caffeic, p-coumaric, ferulic, and sinapic
acids, 7-O-glucosyl luteolin, 7-O-rutinosyl-diosmetin, 7-O-glucosyl
apigenin, 3-O-glucosyl isorhamnetin, 3-O-galactosyl quercetin, and 3-O-
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Figure 2. Principal components diagram of the phenolic compounds
content from all analyzed samples: factor score plot 1-2. Components 1
and 2 account for 74.62% of the total variance. The identities of compounds
are as in Figure 1 and of samples are as in Table 1.

rutinosyl quercetin were purchased from Extrasynthése (Genay, France).
Oxalic, citric, malic, ascorbic, and shikimic acids and sulfanilamide
were from Sigma (St. Louis, MO). N-(1-Naphthyl)-ethylen-diamine
dihydrochlorid, methanol, formic, sulfuric, and o-phosphoric acid were
purchased from Merck (Darmstadt, Germany). The water was treated
in a Milli-Q water purification system (Millipore, Bedford, MA).
Sodium nitroprussiate dehydrate (SNP) was obtained from Riedel-
deHaén. DPPH", sodium hypochlorite solution with 4% available
chlorine (NaOCl), and 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) were
obtained from Sigma Chemical Co.

Plant Material. R. induratus samples spontaneously occurring in
Braganca (Northeast Portugal) or growing in the greenhouse of Escola
Superior Agraria (Instituto Politécnico de Braganca) were analyzed
(Table 1). The greenhouse samples were developed in a double-wall
polycarbonate greenhouse. The plants were grown under a mixture 3:1:1
of organic substrate, sand, and vermiculite. The substrate was a mixture
of peat with other raw materials, such as coco fiber. The main properties
of the substrate were 90% organic matter, 10% ash content, 50%
moisture content, and pH 5.5—6.0. The nutrients in the substrate were
as follows: total nitrogen, 2 mg kg~ '; phosphorus, 1 mg kg™ '; calcium,
5 mg kg~ '; magnesium, 1 mg kg~ '; iron, 2 mg kg~ '; and chloride,
1.5 mg kg~'. The substrate included a compound N:P:K (15:10:20)
fertilizer (plus micronutrients) and dolomitic limestone as additives.
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Figure 3. Phenolic compounds profile of field samples of R. induratus
leaves. The identities of compounds are as in Figure 1.

The plants were regularly irrigated from the automatic nebulization
system of the greenhouse.

The early stage refers to plantules, the optimal stage corresponds to
the growth phase at which they are usually consumed, and the late
stage refers to samples near the end of the vegetative cycle, already
exhibiting flower buds. After the plants were harvested, aerial parts
were immediately transferred to the laboratory and kept in a freezer at
—20 °C, prior to their lyophilization in a Labconco 4.5 Freezone
apparatus (Kansas City, MO). The dried leaves were separated and
powdered.

Sample Preparation. For the preparation of extracts, 3 g of
powdered leaves was boiled in 500 mL of water for 30 min. The extract
was then filtered over a Biichner funnel. The resulting aqueous extract
was lyophilized in a Labconco 4.5 Freezone apparatus (Kansas City,
MO). The lyophilized extracts were kept in an exsicator in the dark.

For the identification and quantification of phenolic compounds, the
lyophilized extract (ca. 20 mg) was dissolved in 1 mL of water. For
the determination organic acids, ca. 5 mg was thoroughly mixed with
I mL of 0.01 N sulfuric acid.

HPLC-UV Analysis of Organic Acids. Twenty microliters of the
redissolved extract was analyzed as previously reported (27), in a
system consisting of an analytical HPLC unit (Gilson) in conjunction
with a column heating device set at 30 °C, with an ion exclusion
column, Nucleogel Ion 300 OA (300 mm x 7.7 mm). Elution was
carried out isocratically at a solvent flow rate of 0.2 mL min~ ',
with 0.01 N sulfuric acid. The detection was performed with an
UV detector at 214 nm. Organic acids quantification was achieved
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Figure 4. Phenolic compounds profile of greenhouse samples from fall/winter of R.

induratus leaves. The identities of compounds are as in Figure 1.
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Figure 5. Phenolic compounds profile of greenhouse samples from spring of R. induratus leaves. The identities of compounds are as in Figure 1.

by the absorbance recorded in the chromatograms relative to external
standards, and the peaks in the chromatograms were integrated using
a default baseline construction technique.

HPLC-DAD Analysis of Phenolic Compounds. The redissolved
aqueous lyophilized extracts (20 uL) were analyzed using an
analytical HPLC unit (Gilson), with a Spherisorb ODS2 (25.0 cm
x 0.46 cm; 5 um, particle size) column and a solvent mixture of
water—formic acid (19:1) (A) and methanol (B) (27). Elution was
carried out at 0.9 mL min~ ' starting with 5% B at 0 min and
installing a gradient to obtain 15% B at 3 min, 25% B at 13 min,
30% B at 25 min, 35% B at 35 min, 45% B at 39 min, 45% B at 42
min, 50% B at 44 min, 55% B at 47 min, 70% B at 50 min, 75% B

at 56 min, and 80% B at 60 min. Detection was achieved with a
Gilson diode array detector. Spectral data from all peaks were
accumulated in the 200—400 nm range, and chromatograms were
recorded at 320 nm for phenolic acids derivatives and at 350 nm
for flavonoidic compounds. The data were processed on Unipoint
system software (Gilson Medical Electronics, Villiers le Bel, France).

Phenolic compounds quantification was achieved by the absorbance
recorded in the chromatograms relative to external standards. Because
standards of the compounds identified were not commercially available,
caffeic, p-coumaric, ferulic, and sinapic acid derivatives were quantified
as caffeic, p-coumaric, ferulic, and sinapic acids, respectively; luteolin
derivatives were quantified as 7-O-glucosyl-luteolin, apigenin derivatives
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Figure 6. Typical organic acids profile of the aqueous extract of R. induratus leaves obtained by HPLC-UV. Detection at 214 nm. Peaks: 1, oxalic acid;

2, citric acid; 3, malic acid; 4, ascorbic acid; and 5, shikimic acid.

Table 3. Organic Acids in R. induratus Leaves (g/kg of Lyophilized Extract)?

organic acid
sample oxalic citric malic ascorbic shikimic total
GFe 362.8 £ 6.5 6.7 + 3.1 796 £0.2 26+04 0.16 +0.00 451.8
GWm 2014+ 0.1 96+18 105.7 +1.3 24+04 0.11 £ 0.01 319.3
GWo 1128+ 0.6 485+ 1.8 1.8+0.1 1.08 4 0.00 164.3
GWI 1148+ 0.5 NQ 129+ 04 15+0.1 1.09 4 0.03 130.3
GSe 3541+ 14 NQ 255403 0.9+0.0 0.23 +0.00 380.7
GSm 388.0 +£3.9 154+1.4 332+ 0.1 1.0+0.0 0.14 +0.00 437.7
GSo 3080+ 1.3 59403 338407 0.6 +0.0 0.17 £ 0.00 348.4
GSI 2937 £0.9 58+19 46.1 +£ 3.6 22+03 0.18 +0.02 347.9
Fm 1271 £ 0.3 53+0.0 76.4+0.9 21+00 0.37 +0.00 211.3
Fo 196.8 + 1.0 27402 24.0+0.9 NQ 0.68 & 0.00 224.2
FI 159.5 + 0.3 2.6 +0.1 283+09 1.0+£06 0.95 4+ 0.01 192.4
Pm 72.0+0.3 72+18 125.1 £ 04 NQ 0.16 £ 0.00 204.4
Po 209.3 +44 NQ 39.7 4+ 34 24403 0.47 £+ 0.00 251.9
PI 156.2 + 0.5 NQ 30.0+4.0 NQ 3.19 £+ 0.01 189.3
Mm 734+05 129447 102.7 +1.3 NQ 0.29 +0.03 189.3
Mo 205.0+ 1.6 0.0 776+ 2.1 NQ 0.67 +£0.02 283.2
MI 161.2 +0.4 NQ 392+19 19+05 1.30 £ 0.02 203.6
Rm 96.8 +£0.7 17.6 £4.0 189.8 5.8 09+02 0.51 £0.13 305.6
Ro 177.0 £ 0.7 NQ 479+24 NQ 0.93 £+ 0.01 225.8
RI 1537+ 0.8 NQ 49.44+1.0 NQ 1.19 +0.02 208.0
SNm 90.0+0.8 35+03 839+20 19+02 0.24 +0.00 179.5
SNo 163.0+ 24 18.3+£0.2 0.87 £+ 0.01 182.2
Snl 176.3 +£2.2 254 +12 0.91 +0.00 202.6
Cm 160.9 + 3.9 9.5+ 0.1 109.7 +2.3 NQ 0.31 +£0.02 280.4
Co 2241 +£2.0 29.3+0.7 NQ 1.02 + 0.1 254.4
Cl 1825+ 0.9 371+27 NQ 0.68 +0.07 220.3
CHm 80.7+2.0 82+09 949+0.2 NQ 0.14 +0.00 184.0
CHo 205.0£0.9 23.2 + 3.1 NQ 0.35 +0.01 228.5
CHI 108.9 +0.3 598 +7.7 NQ 0.42 +0.00 169.2

@Values show means + SD from triplicate; NQ, nonquantifiable.

were quantified as 7-O-glucosyl-apigenin, 6-C-hexosyl-quercetin was
quantified as 3-O-galactosyl-quercetin, diosmetin derivative was quantified
as 7-O-rutinosyl-diosmetin, and isorhamnetin derivative was quantified as
3-0O-glucosyl isorhamnetin. 3-O-Hexosyl-quercetin and 3-O-rutinosyl-
quercetin were quantified together as 3-O-rutinosyl-quercetin.

DPPH’ Radical Scavenging Activity. The antiradical activity was
determined spectrophotometrically in a Multiskan Ascent microplate
reader (Thermo Laboratory Systems) by monitoring the disappearance
of DPPH" at 515 nm, according to a described procedure (27). The
reaction mixtures in the sample wells consisted of 25 uL of aqueous
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Figure 7. Principal components diagram of the organic acids content in
all analyzed samples: factor score plot 1-2. Components 1 and 2 account
for 94.79% of the total variance. The identities of samples are as in Table
1.

extract (five different concentrations) and 200 4L of DPPH" dissolved
in methanol. The reaction was conducted at room temperature (22—25
°C) for 20 min. Three experiments were performed in triplicate.

Nitric Oxide Radical Scavenging Activity. The antiradical activity
was determined spectrophotometrically in a 96-well plate reader
(Multiskan Ascent, Thermo Laboratory Systems) according to the
described procedure (27). The reaction mixtures in the sample wells
consisted of extract and SNP dissolved in saline phosphate buffer (pH
7.4), and plates were incubated at 25 °C for 60 min under light exposure.
Griess reagent (1% sulfanilamide and 0.1% naphthylethylenediamine
dihydrochoride in 2% H3PO,) was then added, and the absorbance was
determined at 540 nm. Three experiments were performed in
triplicate.

Hypochloride Radical Scavenging Activity. The inhibition of
hypochlorous acid-induced 5-thio-2-nitrobenzoic acid (TNB) oxidation
to DTNB, at room temperature (22—25 °C), was observed using a
double beam spectrophotometer (Hedios o, Unicam), as previously
described (27). Hypochlorous acid (75 mM) was prepared by adjusting
a solution of NaOCI to pH 6.2 with diluted sulfuric acid and TNB by
adding 20 mM sodium borohydride to a solution of DTNB [1 mM in
potassium phosphate buffer (50 mM, pH 6.6) containing 5 mM EDTA]
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Figure 8. Organic acids profile of field samples of R. induratus leaves.
The identities of compounds are as in Figure 6.

immediately before use. The amount of TNB remained unchanged after
incubation and was calculated and expressed as a percentage of the
initial value. Three experiments were performed in triplicate.
Statistical Analysis. Principal component analysis (PCA) was carried
out using XLSTAT 2008.5 software. The PCA method shows similari-
ties between samples projected on a plane and makes it possible to
identify which variables determine these similarities and in what way.

RESULTS AND DISCUSSION

R. induratus Phenolic Compounds. HPLC-DAD analysis
of the aqueous extracts of R. induratus leaves revealed the
presence of caffeoyl-hexoside, p-coumaroyl-hexoside, feruloyl-
hexoside, sinapoyl-hexoside, 6-C-hexosyl-quercetin, 8-C-hexo-
syl-luteolin, 2”-O-pentosyl-8-C-hexosyl-luteolin, 6-C-hexosyl-
luteolin, 2”-O-pentosyl-8-C-hexosyl-apigenin, 6-C-hexosyl-
apigenin, 3-O-hexosyl-quercetin, 3-O-rutinosyl-quercetin, 7-O-
hexosyl-diosmetin, and 3-O-rutinosyl-isorhamnetin (Figure 1).
All of these compounds have been reported before in this
species (21, 22).

The quantification of the detected phenolic compounds revealed
some differences among the analyzed samples (Table 2). Samples
produced in the field (samples Fm-CHI) clearly exhibited higher
total phenolic contents than those from greenhouse samples
(samples GFe-GSl) with the exception of those of the mid-
development stage (Figure 2). It seems that the total amount of
phenolic compounds in field samples increased throughout the plant
cycle (Table 2 and Figure 2).
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Figure 9. Organic acids profile of greenhouse samples from fall/winter of R. induratus leaves. The identities of compounds are as in Figure 6.

The phenolic profile of early stages of plant development of
field samples showed 6-C-hexosyl apigenin as the most abundant
compound, followed by 6-C-hexosyl luteolin. This relation is
inverted during the plant development after the optimal stage
for human consumption. Caffeoyl-hexoside, feruloyl-hexoside,
and 2”-O-pentosyl-8-C-hexosyl-apigenin depict a slight decrease
throughout plant growth, while 2”-O-pentosyl-8-C-hexosyl-
luteolin increases during plant development. All other com-
pounds have low and fairly stable amounts (Table 2 and Figure
3). Synapoil hexoside appears to be a marker for later stages of
maturation, decreasing during the plant development (Table 2
and Figure 2).

As referred above, greenhouse samples (samples GFe-GSI) show
lower amounts of phenolic compounds than those observed in field
samples (Table 2 and Figure 2), which can be due to more reduced
environmental agression (28). Within these samples, those collected
in the spring exhibited different behavior in what concerns the total
amount of phenolic. In early stages of the plant cycle, spring
samples showed higher contents than fall/winter samples, but both
increased in the same manner. At the end of the plant development,
the total amount of phenolic compounds in fall/winter samples
continued to increase, but in spring samples, a slight decrease was
noticed (Table 2).

The major compound is, in both sets of greenhouse samples
and in all developmental stages, 6-C-hesoxyl apigenin. In fall/winter
samples (GFe-GW]1), 2”-O-pentosyl-8-C-hexosyl-apigenin, caffeoil-
hexoside, and feruloyl-hexoside begin as second, third, and fourth
most important compounds, respectively, but are, in later stages
of the plant cycle, surpassed by 6-C-hexosyl luteolin. During the
evolution, caffeoyl-hexoside swaps positions with feruloyl-hexo-
side, and both become far less important than 2”-pentosyl-8-C-
hexosyl-apigenin. 2”-O-Pentosyl-8-C-hexosyl-luteolin exhibits an

increase throughout the plant cycle (Table 2 and Figure 3). In
spring samples (GSe-GSl), 6-C-hexosyl luteolin does not evolve
into becoming one major compound. 2”-O-Pentosyl-8-C-hexosyl-
apigenin amounts are stable throughout the cycle, and it is the
second most important compound just until the late stage of
development, in which it is surpassed by caffeoyl-hexoside.
Caffeoyl-hexoside and feruloyl-hexoside are the third and fourth
most abundant compounds in early stages of development, increas-
ing slightly in a parallel manner (Table 2 and Figure 4). Samples
collected during fall/winter in the greenhouse presented a greater
resemblance to field samples of early stages (Figure 2), although
subsequently 6-C-hexosyl luteolin with a high increase and 6-C-
hesoxyl apigenin with a marked decrease, characteristic of the latter,
are less marked (Table 2 and Figures 3 and 4).

R. induratus Organic Acids. The HPLC-UV analysis of the
aqueous lyophilized extracts revealed the presence of oxalic,
citric, malic, ascorbic, and shikimic acids (Figure 6). With the
exception of oxalic acid, the remaining ones are reported for
the first time in this species. Greenhouse samples exhibited
higher organic acids contents than those from field growth, with
the exceptions of those from the more developed stages of fall/
winter harvest (samples GWo and GW1) (Table 3 and Figure
7). In a general way, field samples (Fm-CHI) depicted a slight
decrease in the total amount of organic acids during plant
growth, with the exception of samples collected in Sra das Neves
(samples SNm-SNI) (Table 3).

In these samples, malic and oxalic acid are the major compounds
in the early stage of plant development (Figure 8). However, malic
acid amounts decrease very rapidly, and oxalic acid becomes the
most abundant compound for the rest of the plant’s cycle (Figure
7 and 8). These findings are consistent with the literature, reporting
several Rumex species as having high contents of oxalic acid (9—11).
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Figure 11. Effect of R. induratus on DPPH" reduction. Values show means
=+ SE from three experiments performed in triplicate.
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Figure 12. R. induratus scavenging of nitric oxide. Values show means
+ SE from three experiments performed in triplicate.

In fact, this compound was found in very high amounts in the
lyophilized extract (Table 3), especially in those stages that
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Figure 13. R. induratus scavenging of hypochlorous acid. Values show
means + SE from three experiments performed in triplicate.

correspond to optimal development for human consumption. The
high oxalic acid level may be responsible for the acidity of the
plant and must be a cause for concern due to its ability to form
insoluble calcium salts, disturbing the calcium concentrations, and
ultimately affecting the blood coagulation mechanism (/7, 29).
Besides, the ingestion of oxalates may trigger gastrointestinal
symptoms, and the systemic absorption can lead to kidney damage
(10). Generally, field samples at the middle stage exhibit the lowest
amount of oxalic acid than in any other stage of development
(Figure 7). Nevertheless, all samples show high amounts of oxalic
acid, and according to the above-mentioned, that should be taken
into account when consuming R. induratus leaves. On the other
hand, the high oxalic acid content may play an important role as
a pH regulator and osmoregulator in the plant, accounting also for
its protection against microbial pathogens and foraging animals
and insects, by affecting taste, texture, and calcium availability (29).
Malic acid seems to be related with the maturity degree of the
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plant spontaneously occurring: considering the evolution observed,
younger plants exhibit higher amounts of this compound. In fact,
previous works have already reported some relation between the
malic acid and the ripeness stage of fruits, either increasing or
decreasing with maturation (38, 39). Our results appear to be in
agreement with the latter.

In fall/winter samples from greenhouse growth (samples GFe-
GWI), the total amount of organic acids decreases throughout
the plant’s cycle, but those from the spring harvest (samples
GSe-GSl) showed a slight increase in the middle stages of
development (Table 3 and Figure 7). The decrease observed
in total organic acids contents can also be noticed in most fruit
during ripening, as a consequence of its use as respiratory
substrates and as carbon skeletons for the synthesis of new
compounds (40).

The organic acids profiles of greenhouse samples evolved
differently from that of field samples, although oxalic acid is
the most important compound in both sets of samples and in
all stages of development (Figures 9 and 10). In fall/winter
samples, oxalic acid amounts exhibit a reduction for the middle
stages of development, in opposition to malic acid amounts that
depict a peak in the same stages. In spring samples, oxalic acid
is also the most important compound, but its contents are stable
during plant growth. All other organic acids are present in very
little amounts and show very little variation (Table 3). The
organic acids profile of fall/winter samples is closer to that
observed for field samples during the optimal stage of develop-
ment for human consumption (Figure 7).

The amount of oxalic acid in greenhouse samples from spring
is higher than that observed in field samples (Table 3 and Figure
7), and it represents an increased risk for oxalic acid intoxication.
Fall/winter samples show lower oxalic acid contents and,
therefore, might pose less risk for human health when
consumed.

Antioxidant Activity. The DPPH" assay is a basic assessment
for antiradical activity of extracts: the stable free radical, once
reduced by the antioxidant, no longer displays absorbance at
515 nm (27). The lyophilized aqueous extract of R. induratus
leaves (sample SNo) exhibited a strong concentration-dependent
antioxidant potential (ICso = 106.5 ug mL™") (Figure 11).

Nitric oxide and hypochlorous acid can be responsible for
the formation of more reactive species, such as hydroxyl radical
(30). The aqueous extract of R. induratus leaves showed a potent
scavenging activity against nitric oxide in a concentration-
dependent manner, with an ICso of 92.7 ug mL ™" (Figure 12).
The extract exhibited a lower activity against hypochlorous acid.
Nevertheless, a concentration-dependent antioxidant potential
was observed (ICo = 171.3 ug mL™") (Figure 13). These
findings, along with the fact that R. induratus leaves can act as
superoxide radical scavengers and xanthine oxidase inhibitors
(21), are extremely valuable: The simultaneous scavenging
capacity of superoxide radical and nitric oxide can prevent the
formation of peroxynitrite and, ultimately, hydroxyl radical (30).

The ICsy found for the DPPH" assay is lower than that
previously reported for this radical species under the same assay
conditions (21), revealing a higher antioxidant potential, possibly
due to the higher content of phenolic compounds in our sample,
in spite of a lower content in organic acids. These results seem
to indicate that phenolic compounds account for bigger contri-
butions to the antioxidant capacity of the species than organic
acids. Antioxidative properties have been observed for hydroxy-
cinnamic acids derivatives (3/—33), luteolin, apigenin, quer-
cetin, and diosmetin glycosides (32, 34—36). Organic acids, such
as oxalic, ascorbic, and citric acid, have also been shown to
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exhibit antioxidant capacity in several models (37). This suggests
that all of these compounds may contribute in some extent to
the antioxidant activity of the extract.

R. induratus has been shown to actively remove Hg from
the soil and could be used as a phytoremediation in contaminated
soils (24). Results presented here may explain the oxidative
stress resistance in the presence of Hg compounds in the aerial
parts of the plant.

The results obtained herein confirm that this is an interesting
dietary source of bioactive compounds, namely, phenolics. In
a general way, field samples show higher phenolics contents
than Brassica oleracea var. costata leaves and than inflores-
cences of B. oleracea var. acephala and Brassica rapa var. rapa,
other vegetal materials also consumed (47, 42). In addition,
organic acids are present in higher quantities relative to other
vegetables, mainly due to the presence of oxalic acid in high
amounts, which is not observed in other plant foods (42, 43).

In conclusion, the qualitative profile of phenolic compounds and
organic acids in R. induratus leaves is maintained for all samples,
suffering quantitative changes according to the plant development.
Samples for all stages of development exhibit a high content in
oxalic acid, which should be taken into account regarding oxalic
intoxication, either by intentional or by nonintentional consumption.
As the LDsg of oxalic acid is pointed to be within 50 and 500
mg/kg body weight, children are at greater risk than adults. The
protective activity displayed against nitric oxide and hypochlorous
acid, together with the one described before for superoxide radical,
suggests that the consumption of this vegetable may prevent the
formation of other more reactive species, which increases the
interest for their intake.
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